1. Representation theory and automorphic form
Author: / edited by Toshiyuki Kobayashi, Wilfried Schmid and Jae-Hyun Yang
Library: Central Library and Document Center of Shahid Chamran University (Khuzestan)
Subject: Automorphic forms.,Representations of groups.
Classification :
QA
,
243
,.
R47
,
2007eb


2. Representation theory and automorphic forms /
Author: Toshiyuki Kobayashi, Wilfried Schmid, Jae-Hyun Yang, editors
Library: Center and Library of Islamic Studies in European Languages (Qom)
Subject: Algebraic number theory,Automorphic forms,Shimura varieties
Classification :
QA243
.
R47
2008


3. Representation theory and automorphic forms
Author: edited by Toshiyuki Kobayashi, Wilfried Schmid and Jae-Hyun Yang
Library: Central Library of Imam Khomeini International University of Qazvin (Qazvin)
Subject: Algebraic number theory,Shimura varieties,Automorphic forms
Classification :
QA
.
R47
243
2008


4. Representation theory and automorphic forms
Author: edited by Toshiyuki Kobayashi, Wilfried Schmid and Jae-Hyun Yang
Library: Central Library Yasuj University (Kohgiluye va Buyer ahmad)
Subject: Algebraic number theory,Shimura varieties,Automorphic forms
Classification :
515
,.
7223
,.
R47
,
2007


5. Representation theory and automorphic forms
Author: Toshiyuki Kobayashi, Wilfried Schmid and Jae-Hyun Yang )editors(
Library: Library of Institute for Research in Fundamental Sciences (Tehran)
Subject: ، Algebraic number theory,، Shimura varieties,، Automorphic forms
Classification :
QA
243
.
R467


6. Symmetry breaking for representations of rank one orthogonal groups
Author: Kobayashi, Toshiyuki, 2691-
Library: Library of Institute for Research in Fundamental Sciences (Tehran)
Subject: ، Broken symmetry )Physics(,، Operator spaces,، Banach spaces,، Group theory
Classification :
QA
3
.
A475
no
.
1126


7. Symmetry breaking for representations of rank one orthogonal groups II /
Author: Toshiyuki Kobayashi, Birgit Speh.
Library: Center and Library of Islamic Studies in European Languages (Qom)
Subject: Broken symmetry (Physics)-- Mathematics.,Conformal geometry.,Lie groups-- Analysis.,Symmetry (Mathematics),Differential equations, Partial.,Global differential geometry.,Number theory.,Topological groups.
Classification :
QA174
.
7
.
S96


8. The Schrodinger model for the minimal representation of the indefinite orthogonal group O )p, q(
Author: Kobayashi, Toshiyuki, 2691-
Library: Library of Institute for Research in Fundamental Sciences (Tehran)
Subject: ، Representations of Lie groups,، Schrodinger equation
Classification :
QA
3
.
A475
no
.
1000

